
 

 

  
Abstract—In this paper, we obtain analytical solutions of a 

system of time-fractional coupled Burger equation of one-
dimensional form via the application of Fractional Complex 
Transform (FCT) coupled with a modified differential transform 
method (MDTM). The associated fractional derivatives are in terms 
of Jumarie’s sense.  Illustrative cases are considered in clarifying the 
effectiveness of the proposed technique. The method requires 
minimal knowledge of fractional calculus. Neither linearization nor 
discretization is involved. The results are also presented graphically 
for proper illustration and efficiency is ascertained. Hence, the 
recommendation of the method for linear and nonlinear space-
fractional models. 
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I. INTRODUCTION 
UUGER’S  equation appears to be a basic partial 

differential equation with copious applications in applied 
mathematics viz: modelling, gas dynamics, traffic flow, 
nonlinear acoustics and so on [1-3]. As regards stochastic 
dynamics, we the application of stochastic Burgers equation in 
mathematical finance, quantum physics, and financial physics 
[4-6]. The integer one-dimensional form of the coupled 
nonlinear Burger equation follows: 
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subject to the following conditions (1.2) and (1.3) (that is, 
initial and Dirichlet boundary conditions respectively): 
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for ,x ∈Ω  0t >  where [ ]{ }: ,x x c dΩ = ∈  signifies a 

domain of computational interval while the constants 

1 2 1 2,  ,  ,  and ξ ξ µ µ  are real, while  and γ η  are arbitrary 
constants subject to the system’s constraints. 
A lot of analytical, semi-analytical, and numerical methods of 
solution appear in literature for solving PDEs such as the one-
dimensional Burger, coupled Burger equations (1.1) and the 
likes [7-24].  
Sequel to fractional calculus, this work considers a non-integer 
ordered form of (1,1) as an extension which is regarded as 
time-fractional order coupled nonlinear  Burger equation of the 
form: 
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Recent work on fractional Burgers’ equation include that of 
Momani [25] via the application of a semi-analytical approach: 
Adomian Decomposition Method (ADM). 

II. FRACTIONAL DERIVATIVE IN THE SENSE OF JUMARIE 
It is noted here that Jumarie’s Fractional Derivative (JFD) is a 
modified form of the Riemann-Liouville derivatives [26]. 
Hence, the definition of JFD and its basic properties as 
follows: 
Suppose ( )zσ  is a continuous real valued function of z , and 
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Then,  
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where ( )Γ ⋅  represents a gamma function. The main features 

of JFD [23] as follows: 
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The features (i)-(v) are fractional derivative of: constant 
function, constant multiple function, power function, product 
function, and function of function respectively. Though, (v) 
can be associated to Jumarie’s chain rule in terms of fractional 
derivative. 

III. THE REDUCED DIFFERENTIAL TRANSFORM [27-30] 

Suppose ( ),m x t  is an analytic and continuously differentiable 

function, defined on D  a given domain, then the differential 
transformation form of ( ),m x t  is defined and expressed as: 
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where ( )kM x and ( ),m x t  are referred to as the transformed 
and the original functions respectively. Thus, the differential 
inverse transform (DIT) of ( )kM x  is defined and denoted as: 
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A. The fundamentals properties of the DTM 
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B. The Fractional Complex Transform [26, 31] 

Suppose we consider a general fractional differential equation 
of the form: 

 ( ) ( ), , , , 0,  , , ,t x y zh D D D D t x y zα β λ γυ υ υ υ υ υ υ= = ,             

                       (3.3) 
and define the Fractional Complex Transform (FCT) as 
follows: 
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where a is an unknown constant, then from (iii), we have: 
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IV.  EXAMPLES/APPLICATIONS 
Here, the concerned method of solution is used for a nonlinear 
time-fractional coupled Burger equation as follows. 
Suppose we take 1 2 1 21,  2,  1,  2ξ ξ µ µ= − = − = − = − , & 

1γ η= = , then we consider (1.4) of the form: 
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subject to: 

( ) ( ) ( ),0 ,0 sinu x v x x= = .                   (4.2) 

Solution Steps: 
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subject to: 

( ) ( ),0 sin ,0u x x v x= = . 

By the RDTM in section 3, we have the recurrence relation 
from (4.3) as: 
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Hence, using the initial condition: 
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In general, we have: 
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Similarly, 
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Hence, the exact solution of (4.1) is: 
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Note: when 1α =  in (4.9), we have 
( ) ( ) ( ) ( ), sin exp ,u x t x t v x t= − =  yielding the exact 

solution of the classical coupled nonlinear Burgers equation in 
line the result in [1], [7], and [23]. 
 

 
Fig. 1: Graphical solution for at 1,  ( 1) tα = =  
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Fig. 2: Fig. 1: Graphical solution for at 0 75,  ( 1) tα = ⋅ =  

 

V. CONCLUDING REMARKS 
We obtained exact solutions of solutions of a system type of 
time-fractional nonlinear coupled Burger equations via the 
application of FCT coupled with reduced differential 
transform method. The FCT is indeed simple but effective and 
accurate for the solutions of fractional differential equations. 
The associated derivatives were defined in terms of Jumarie’s 
sense. It is noted that basic knowledge of advanced calculus is 
more required than that of fractional calculus while obtaining 
exact solutions of fractional equations with high level of 
accuracy not being compromised. This can therefore be 
extended to space-fractional derivatives of higher orders both 
in linear and nonlinear forms. 
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